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Abstract. Standard assumed displacement finite elements with

anisotropic material properties perform poorly in complex stress fields such

as combined bending and shear and combined bending and torsion. To ad-

dress this problem, a set of three-dimensional hybrid-stress brick elements

were developed with fully anisotropic material properties. Both eight-node

and twenty-node bricks were developed based on the symmetry group theory

of Punch and Atluri. An eight-node brick was also developed using complete

polynomials and stress basis functions and reducing the order of the result-

ing stress parameter matrix by applying equilibrium constraints and stress

compatibility constraints. Here the stress compatibility constraints must be

formulated assuming anisotropic material properties. The performance of
these elements was examined in numerical examples covering a broad range

of stress distributions. The stress predictions show a significant improvement

over the assumed displacement elements but the calculation time is increased.
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Introduction

The development of high strength single crystal metallic alloys, such as those

used in the turbine blades in the fuel pump in the space shuttle main engine,

has placed new emphasis on the need for anisotropic stress analysis, especially

in the area of finite element analysis. These single crystal materials have a

high degree of anisotropy and the use of standard assumed displacement finite

elements can lead to very poor approximations of stresses, displacements,

natural frequencies, and mode shapes. This work outlines the possibility of

resolving these deficiencies by developing hybrid stress elements formulated

for three dimensional linear anisotropic elasticity.

The hybrid stress elements are based upon a modified complementary

energy principle in which the displacements and stresses are independently

interpolated. Two approaches to the interpolations are considered here, both

of which assure correct stiffness rank, coordinate invariance, and elimination

of spurious zero energy modes. The first is based on work by Spilker, Maskeri,

and Kania [1] and Spilker and Singh [2] in which complete equilibrated poly-

nomials are used. The number of stress parameters is reduced by applying
compatibility constraints reformulated in terms of the stresses. The second

approach is based upon recent work by Rubenstein, Punch and Atluri [3]

and Punch and Atluri [4, 5] in which group theoretical methods are used

to minimize the number of stress parameters while still satisfying rank and
invariance requirements.

Eight node and 20 node brick elements have been compared to both

standard displacement elements and to exact solutions, when possible, for

both isotropic and anisotropic materials. These comparisons have been made

on single elements as well as on multielement cantilever beams under various

loading conditions. The hybrid elements have demonstrated significantly

improved performance for the analysis of highly anisotropic materials. In

fact, eight node hybrid elements have shown superior performance to 20

node displacement elements where the material is highly anisotropic.

1 Derivation of the Element Stiffness Matrix

The hybrid stress model is developed in the same manner regardless of the

form of stress interpolation. The development is based upon a modified

complimentary energy principle in which Lagrange multipliers are used to

relax interelement traction continuity and mechanical boundary conditions.

The required functional for the hybrid stress formulation is given by:

1
(1.1)
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where a is the stress vector, S is the compliance matrix for the material, D

is the strain-displacement matrix, u represents the local displacements, and

T are the prescribed traction boundary conditions.

The local displacements are interpolated in terms of the nodal displace-

ments through the displacement shape functions N.

= _2 N_(_, _, _)_,

(1.2)

w : _2 N{((, 7, ¢)w,

where ui, vi and wi represent the displacements at node i. Equations (1.2)

can be expressed more concisely in matrix form as

u = Nq 1.3)

where q is a column vector of the nodal displacements. The displacement

shape functions used for these three dimensional elements are the serendip-

ity shape functions. The same shape functions are used to map the ac-

tual element geometry into the master element coordinate system generating

standard isoparametric elements in terms of displacements. The coordinate

transformation is given by

x = _2 N_(_, _, _)x_

= _ N_(_, _, _)y_ (1.4)

z = _ x_(_, 7, ¢)z_

The strains are related to the displacements in exactly the same manner

as for a standard assumed displacement technique. The strain displacement

matrix D is then given by

D

I O/Ox o o 1

o O/Oy o
o o O/Oz

O/Oy O/Ox o
O/Oz O/Oz O/Oy

(1._)

and the local strains are given by

= Du = DNq = Bq
(1.6)

The stresses are interpolated separately from the displacements using a

different set of interpolation functions. In addition, rather than interpolating

in terms of the nodal displacements, the stresses are interpolated in terms

of a set of stress parameters _ which are only indirectly related to the nodal
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displacements.The stressesG are related to these stress parameters via the

stress interpolation function matrix P:

cr = P(x,y,z)/3 (1.7)

such that the homogeneous equilibrium conditions are exactly satisfied, i.e.,

Ea = EP3 = 0

Substituting (1.7) into (1.1) yields

1 f_ 3rpZSP3dV_ f_/_TpTBqd V

(1.8)

+ qVNVTdS} (1.9)

Tile differential volume dV can be found in terms of the determinant of the

Jacobian of the coordinate transformation as

dV = IJId¢&d (1.10)

The following element matrices can be defined from equations (1.9)

(1.10) to simplify statement of the complimentary energy function

U _-- /__11 /__11 /__11 pr_pijid_d?]d_

and

1.11)

Q = £o,_ NTTdS

The element degrees of freedom are related to the global degrees of free-

dom by the matrix L

q = Lq" (1.12)

Substituting equations 1.11-1.16 into equation 1.9 yields:

IIm_ = __, { I _T Ht3- j3TGLq" + q*r LQ} (1.13)
n

Taking the first variation of IIm_ with respect to ,8 and setting the varia-

(Ht3 - GLq')6/3 = O

/3 = H-IGLq *

tion to zero gives:

-Im C

(1.14)

(1.15)

Substituting this definition for/_ back into Ilm_ yields:

= _ {2q'r LTGTH-1GLq* - q*r LTGTH-1GLLq" + q*T LTQ}

(1.16)

n
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Setting the first variation of H,_c with respect to q to zero, we obtain

_LTGTH-1GLq * + LTQ) 6q* = 0
(1.17)

LTKLq * = LTQ

where K -- GTH-1G and is the element stiffness matrix and Q is the forcing

vector due to surface tractions•

2 Formulation of the Assumed Stress Field

The assumed stress field must satisfy the homogeneous equilibrium equa-

tions, must provide an element stiffness matrix with no spurious zero energy

modes, and must be invariant under rotation• The number of stress param-

eters must be greater than or equal to the number of element degrees of

freedom minus the number of rigid body modes for the stiffness matrix to be

of sufficient rank to eliminate spurious modes• This minimum number of _'s

is a necessary condition but not a sufficient condition to guarantee adequate

rank in the stiffness matrix, nor does a stress field which achieves adequate

rank assure an element which is rotationally invariant. However, systematic

approaches to defining the stress field are available which can achieve both

goals.

Spilker has shown that if the stress field consists of complete polynomials

(i.e., complete quadratics, or complete cubics) the resulting stiffness matrix
will both be of sufficient rank and will be invariant so long as the number of

_'s equals or exceeds the minimum requirement. For an eight node brick, a

full quadratic stress interpolation is required while for the 20 node brick the

minimum complete polynomial is a cubic• The stress field for the eight node

bricks is then defined as:

_gX

cry

Orz

vxu

rxz

ryz

Pl

P2

P3

P4

P5

P6

(2.18)

where the p_'s are row vectors of length 10. Thus

a, = _1 + 2/_2x + 2f14z + j35x 2 + 2_sxy + 2_Txz + _sy 2 + 2_gyz + t31oz 2 (2.19)

A total of 60 fl's are required to initially define the stress field, but when

equilibrimn constraints are applied, twelve of these stress parameters are
eliminated• To further reduce the number of stress parameters, the following

34



strain compatibility conditions are applied:

02e_ 02e. _y+ =

02e. 02e. =

02e 02e.
 -2rx =

a2_. a ( a_,_ a_,., a_,._'_2o -N +--N-y+ az /

For a fully anisotropic material, the strains are defined in terms of the com-

ponents of the compliance matrix as:

ex = alla,_ + al2a_ + al3az + al4vxy + alsr_z + a16ryz (2.21)

where the a's are defined as in (1.18) above. Applying the first compatibility

constraint yields

a 2

Oy 2 (allaz q- al2_y + al3az --t- al4v_:y + alsVxz --t- al6"ryz)

0

+ _x 2 (al2a_ + a22a_ + a23az "_ a24vxy -_- a2s%:_+ a26Tyz)

05

OxOy (a14a_ -t- a24a_ -t- a34az q- a44T_y -t- a4sTxz q- a46v_,) = 0

Carrying out the differentiation on the equilibrated stress field yields

a 1, (_4) q- a12(- fl47 q- a13(Zls nu a14(Z26 ) q- a15(_36 ) + a16(Z46)

(2.22)

-t- a12(- _3s ) q- a22(_10 + a23(_16 q- a24(_23) q- a2s( _33 ) -t- a26(_43) (2.23)

-( a14(-_26)-t-a24(-_23) q-a34(_lT) q-a44(_24) Wa,is(_34 )nt-a46(_14) ) =O

Each equation can be used to eliminate a single/_ so that the resulting stress

field contains 42 stress parameters.

The same procedure can be applied to the 20 node brick except that

since the polynomials are cubics, the resulting equations will be functions of

x, y, and z. Since these compatibility constraints must be independent of

position, each of these coefficients can be equated to zero yielding a total of

24 equations. Three of these equations are dependent so that a total of 21

_'s may be eliminated. Starting with a full cubic stress field with 120 _'s

and eliminating 30 stress parameters via the equilibrium constraints and an

additional 21 parameters via the compatibility constraints produces a stress
field with 69/_'s.

An alternative approach to the stress field is based upon the work of

Punch and Atluri. The element is formulated as a cube and due to its sym-
metry, it is invariant to certain rotational and reflective transformations. The
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symmetry group of a cube comprisesa total of 24 invariant transformations
consisting of one identity transformation, nine rotations, six reflections, and
eight rotation-reflections. This symmetry group has five irreducible repre-
sentations. The displacementfield for a 20node brick consistsof incomplete
quadratics. This displacement field can be rearranged into a set of sub-
spaceswhich are invariant under the symmetry group operations and these
subspacesareprojected onto natural irreducible invariant displacementsub-
spaces,producing a total of 54 strain subspaces.By tile sameprocedure the
complete equilibrated stressfield is decomposedinto a set,of 90 irreducible,
invariant stresssubspaces.

At this point, the stressfield is precisely equivalent to the equilibrated
stressfield produced above. However,sinceeachstresssubspaceis invariant,
the removalof any stresssubspacedoesnot alter the invarianceof the result-
ing stressfield. An invariant least order stressfield canbe constructed from
any 54 of thesestress subspaces.A total of 384 choicesexist for the least
order stress field. While the resulting stressfields are invariant and form
stiffness matrices of full rank, they are necessarilyformed from incomplete
polynomials and thus may not contain the cardinal stress states for pure
bending, or pure torsion, etc. Severalchoices,though, provide excellent rep-
resentation of cardinal stressstatesfor tension, shear, bending, and torsion.
Specifically the 20nodeleast-order selectionreferred to asLO20:1 by Punch
and Atluri wasused for these studies while the eight node selectionLO8:8
wasused.

The basic premise on which theseelements are based is the symmetry
groups for the cube. For anisotropic materials, this symmetry is clearly
violated, but the resulting element is a reasonableapproximation to the
stressfield. This samelack of symmetry applies to distorted elementsbut
Punch and Atluri have shown that the eight node elements can tolerate
mild distortions and 20 node bricks can tolerate severedistortions while
still providing good results. The asymmetry due to anisotropy should have
similar effectson elementperformance.

The elementsformed from completepolynomials and reducedvia equilib-
rium and compatibility constraints should provide superior performancefor
highly anisotropic materials but they also suffer in time comparisonssince
the number of stressparameters is so high (42 and 69 for 8 and 20 node
bricks respectively).

3 Determination of the Degree of Anisotropy

A fully anisotropic material has 21 independent parameters and varying any

one of these parameters changes the degree to which the materials properties

differ from an isotropic material. However, to determine the influence of

anisotropic material properties on the performance of these elements, it is

necessary to systematically vary the material properties from an isotropic
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material to a fully anisotropic material. Since very few materials exhibit
full anisotropy in all orientations, it seemsappropriate to begin with an
orthotropic compliancematrix and by performing a non-symmetric rotation
on it, generatea fully anisotropic compliancematrix. If the rotation is held
constant, then by varying the ratio of the Young's moduli, shear moduli,
or Poisson'sratios, compliancematrices varying from fully isotropic to fully
anisotropic can be generated. For these tests, the following direction cosine
matrix was usedfor the rotation:

.5774 .5774 .5774

.7071 -.7071 .0000

-.4082 -.4082 .8165

Both the ratio of the Young's moduli and the shear moduli were varied
over the range of .1 _<Ell/Eaa <_ 10 and .1 < G12/G2a <_ 10. The remaining

modulus was set to the average of the other two. While many other schemes

for systematically varying the degree of anisotropy could be used, this method

appears adequate for this purpose.

4 Numerical Results

The eight node and twenty node hybrid elements were compared to the stan-

dard displacement elements for both single elements and for a six element

beam. The single elements were tested in pure tension, pure shear, bending,

and torsion using both isotropic and anisotropic properties. As is shown in

Table I, all elements gave exact solutions for pure tension and pure shear

with isotropic material properties. For pure bending, the eight node dis-

placement element is overly stiff but all of the hybrid elements again give

exact results. None of the elements is able to give exact results for torsion,

but the hybrid elements perform as well or better than the corresponding

displacement element.

Table I. Displacements Produced by Cardinal Stress States for

Isotropic Material Properties

Pure Pure Pure Pure

Element Tension Shear Bending Torsion

DM8 100 100 67 84

H8-42 100 100 100 84

H8-18 100 100 100 84

DM20 100 100 100 95

H20-54 100 100 100 102
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As the degreeof anisotropy is increased,the ability of the displacement
elementsdecreases.Table II showsthe sameinformation as Table I except
for anisotropic material properties. Here the ratio of Eu/E3a is 3 and the

material axis is rotated with respect to the element axis by the direction

cosines given in the previous section. Both the displacement elements show

deterioration in bending and torsion as the degree of anisotropy increases

though the degradation is smM1 for the 20 node element.

Table II. Displacements Produced by Cardinal Stress States for

Anisotroplc Material Properties

Pure Pure Pure Pure

Element Tension Shear Bending Torsion

DM8 100 100 46 76

H8-42 100 100 100 84

H8-18 100 100 100 84

DM20 100 100 97 92

H20-54 100 100 100 95

These calculations were performed using double precision for all real vari-

able calculations. The results for the 20 node elements were compared for

three integration rules: a 4 x 4 x 4, a 3 x 3 x 3, and the 14 point rule proposed

by Irons [6]. The differences in results were less than 1 percent. Spilker [5]

stated that the 14 point rule produced some ill conditioning of H but no

such ill conditioning was detected in these runs. Consequently the 14 point

rule was used for all subsequent calculations except for occasional checks to

assure that the results were indeed the same for the 14 point and 3 x 3 x 3

rules.

A six element cantilever beam was analyzed using both eight node and 20

node bricks. These beams are shown in Figure 1. The beams were analyzed

both with a pure moment loading and a uniform end shear and for isotropic

material properties as well as a series of anisotropic material properties. Fig-

ure 2 shows the normalized tip displacement for a pure moment loading with

eight node bricks as a function of the degree of anisotropy where the degree of

anisotropy is given by the ratio of the Young's moduli in the primary material

axes. Figure 3 shows the normalized tip displacement of the cantilever beam

for uniform end shear as a function of the degree of anisotropy. The hybrid

stress elements are clearly less sensitive to the degree of anisotropy than the

displacement. This is true even for the least-order formulations of Punch

and Atluri which depend upon element symmetry for their formulation.

Figure 4 shows a comparison of az in the cantilever beam for a pure

moment load on the end of the beam as a function of the degree of anisotropy.

The stresses in the beam should not change as the material properties change

and all stresses except az should be zero. This is clearly not the case for
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the displacementelements,even for the 20-node brick. For casesof severe
anisotropy, ]aylma_is as much as 93 percent of I ylmo while the maximum

stress of 74 percent of laylma_. For the 20-node hybrid stress element the

corresponding values are 5.6 percent and 3.2 percent. The eight node element

actually gives better results than the 20 node brick because the stresses were

interpolated at the 2 x 2 x 2 Gauss points which are the optimum points.

The hybrid stress elements clearly give better displacements and stresses

for highly anisotropic material properties than their corresponding displace-

ment elements but at some calculational expense. The calculation times are
shown in Table III for calculation of the six element cantilever beam. These

elements require up to three times as long for the calculations but at least

twice as many elements are required to obtain the same degree of accuracy

in az and the accuracy in the shear stresses and in a_ and ay is still better

in the hybrid stress elements.

Table III. Calculation Time for 6 Element Cantilever Beam

DM 8 DM 20 H8-18 H8-42 H20-54

Time (sec) 67 552 108 562 1422

5 Conclusions

The hybrid stress elements presented here can provide significantly improved

accuracy in both displacements and stresses for highly anisotropic materials

in areas of high stress gradients. The 20-node hybrid stress brick element

provides increased accuracy over the 20-node displacement element at a cost

of approximately a 3 to 1 increase in computation time. The eight node hy-

brid element H8:18 provides much improved results over the standard eight

node displacement element with less than twice the computation time. The

most surprising result, however, is that the eight node hybrid element pro-

vides almost the same degree of accuracy as the 20 node displacement element

at one-fifth of the calculational effort. For high degrees of anisotropy, this

element gives superior results to the 20-node displacement element.
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Twenty Node Brick Elements

Fig. 1 Six Element Cantilever Beams
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Fig. 2 - Normalized Tip Displacement for Cantilever Beam with Pure Moment Loading
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